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A literature survey (Berger, Talbot & Yao 1983) indicates that laminar viscous flow 
in curved pipes has been extensively investigated. Most of the existing analytical 
results deal with the case of circular cross-section. The important studies dealing with 
elliptical cross-sections are mainly due to Thomas & Walters (1965) and Srivastava 
(1980). The analysis of Thomas & Walters is based on Dean’s (1927, 1928) approach 
in which the simplified forms of the momentum and continuity equations have been 
used. The analysis of Srivastava is essentially a seminumerical approach, in which 
no explicit expressions have been presented. 

In  this paper, using elliptic coordinates and following the unsimplified formulation 
of Topakoglu (1967), the flow in a curved pipe of elliptical cross-section is analysed. 
Two different geometries have been considered : (i) with the major axis of the ellipse 
placed in the direction of the radius of curvature; and (ii) with the minor axis of the 
ellipse placed in the direction of the radius of curvature. For both cases explicit 
expressions for the first term of the expansion of the secondary-flow stream function 
as a function of the ellipticity ratio of the elliptic section have been obtained. After 
selecting a typical numerical value for the ellipticity ratio, the secondary-flow 
streamlines are plotted. The results are compared with that of Thomas & Walters. 
The remaining terms of the expansion of the flow field are not included, but they will 
be analysed in a future paper. 

1. Introduction 
In determining the flow field in a curved pipe with elliptic periphery it seems 

natural to use elliptic coordinates. In addition to this any available velocity field 
expressed in elliptic coordinates facilitates further investigations of problems involving 
flows in curved elliptical pipes. Elliptic coordinates are thus selected to represent the 
orthogonal coordinates in the cross-sectional plane of the curved pipe. The selection 
of coordinate axes and other pertinent quantities are shown in figures 1 and 2, where 
the axis O X ,  represents the axis of symmetry for the curved pipe. The origin of axes 
CX and C Y  in the cross-sectional plane is taken a t  the point C. 

The semimajor and the semiminor axes of the elliptic periphery are denoted by A ,  
and B, respectively. The radius of curvature of the centreline of the curved pipe is 
denoted by Z. The corresponding dimensionless radius of curvature, using the 
horizontal semiaxis of the section as unit length, is defined as 

c = CIA, (1.1) 

where A is the horizontal semiaxis of the section ( A  = A ,  for a horizontally placed 
ellipse, A = B, for a vertically placed ellipse). 
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FIGURE 1. Definition of coordinates for horizontally placed ellipse. 

The ellipticity of the periphery is defined by the factor 

The dimensionless variables are defined by 

X = A x ,  Y = A y ,  I 

where (X, Y) and (x, y) are respectively dimensional and dimensionless coordinates 
along the X- and Y-axes, W and w are the dimensional and dimensionless velocity 
components in the &direction, Y and II. are the dimensional and dimensionless stream 
functions in the cross-sectional plane, and v, p and p are the kinematical viscosity, 
density and the pressure. 

The velocity components along the X- and Y-axes are related to the stream function 

(1.4) 
1 

II. by 
1 

U = - Y y ,  v=- -Y  
Y Y x. 

It is convenient t o  introduce a new stream function 4, as 

1 
d = $  



Laminar flow in a curved pipe of elliptical cross-section 33 1 

xs 
Axis of 

curved pipe 

\ 

X 
z - c 

Cross - section 

FIQURE 2. Definition of coordinates for vertically placed ellipse. 

and a constant k, by the relation 

The constant k, is related to the Reynolds number of the flow by 

(1.6) 

(1.7) ko = 4Re, 

provided that the Reynolds number for the flow in the curved pipe is defined aa the 
Reynolds number for a flow in a straight circular pipe of radius A and maintained 
under the same pressure gradient as that of the curved pipe. The pressure gradient 
in the curved pipe is measured along the centreline circle. 

The dimensionless primary-flow velocity component w and the dimensionless 
stream function $ satisfy the following equations (cf. Topakoglu 1967) : 

k = -gk,,. 

where 
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2. Expansions of primary and secondary flows in terms of curvature 
The flow field can be expanded in terms of the curvature 

A = l/u 

w = w,+Aw,+A2w2+ ... 

4 = h4,+A2q4,+ .... 

into power series as 

I 
The zero-velocity condition on the periphery may be expressed as 

d4 wi = 0, q5i = 0, - = 0 
d6 ’ 

where d/d< represents differentiation in the normal direction to the boundary in the 
meridian plane. 

Substitution of w and q5 from (2.2) into the first equation of (1.8) and comparison 
of the coefficients of A, yield 

V2w, = - k,. (2.4) 

The solution of this with the boundary condition w, = 0 on the periphery is 

(2.5) 

for a horizontally placed ellipse, 

for a vertically placed ellipse, 

where a, and b, are the dimensionless semimajor and semiminor axes defined relative 
to  the unit length A ,  and 

a: b; c=-  
1 +m4‘ 

At this stage it is convenient to  introduce the elliptic coordinates (5,~) 
cross-sectional plane by the relations 

1 m2 1 
Y = l+m2 ( s + T )  cosy, x = - 

I for a horizontally placed ellipse, 

I 1 m2 1 m2 
y = 1--m2 (6-T) sinr ,  x = - (5+7>  cosr 1 -m2 

for a vertically placed ellipse, 

for which the ranges of each coordinate are 

3. Secondary flow for horizontally placed elliptical periphery 

of the coefficients of A yield 
Substitution of w and 4 from (2.2) into the second equation of (1.6) and comparison 

(3.1) 
aw 0 

v44, = 2w, -. ax 



Letting 

and using (2.5 

where 
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1+m2 2 -  

$1 = - Re2 (m) $1 

and (2.6), (3.1) reduces to 

V4& = 4b(l+m4-2,) [ ( l  +m2+m4) sin7-m2 sin371, 

m2 m4 
b = 6-- x2 = E”-. 

E ’  E2 
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The transformation of the Laplace operator from rectangular coordinates to elliptic 
coordinates is 

where 

(3.3) 

and 632 = x 2  - 2m2 cos 27. 

Letting 
- 1 =  
$ = - $,, b, = 1 -m2,  

bl 
and using (3.3), the equation for V4$, transforms into a form involving the operator 

V2 as - 
V2V2$, = b, b(u,  sin 7 +us sin 37 + u, sin 57), (3.4) 

where b, bu, = 4[ (  1 - mlO) e8 - ( 1  - m6) el ,  t2] t3, 
b, bu, = - 4m2[ ( 1  -,lo ) e2 - ( 1  -m2)  el, E41 f ; ,  

b, bu, = 4m4[(1 -ma) e2-  ( 1  -m2)  e6 t2] 

and 
e 2 = 1 - - - ,  m2 e , = I - - - ,  m6 e , , = l - - .  mlo 

t2 E6 El0 
- 

The form of (3.4) indicates that  the solution for V2q, must have the form 

- 
~ 2 3 ,  = L, sin 7 + L, sin 37 + L, sin 57, (3.5) 

where L,, L, and L, are functions of 6. 
After taking the Laplacian o2 of the right-hand side of (3.5) and comparing the 

resulting form with the right-hand side of (3.4), one finds the following ordinary 
differential equations for L,, L, and L, : 

In  each of the above differential equations, primes indicate differentiation with 
respect to the proper variable z. 
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After the substitution of ulr u3 and u5 into (3.6), successive integrations yield 

where the constants in the first two terms of each expression are integral constants. 
Before integrating again, (3.5) must be transformed, by use of (3.3), into a form 

- 
containing V 2  as 

where 
V23, = ii, sin 7 + ii3 sin 37 +us sin 57 + ii, sin 77, 

1 
u1 = ( M ,  - m2M3) 5 3  - m2(N3 - m2N1) -+ ( N ,  + m2M1) (6+?) g3 

(3.8) 

' (3.9) 

- 
The form of equation (3.8) suggests that the solution Fl should have t,he form 

- - 

= F, sin 7 + F3 sin 37 + F5 sin 57 + F7 sin 77, (3.10) 

where Fl, F3, F5 and F7 are functions of 6. 
Following similar steps for Ill, L3 and L5,  similar ordinary differential equations 

are obtained for F,, F3, F5 and F7. The boundary conditions needed are obtained by 
the following considerations : 

The secondary-flow dimensionless velocity components in the directions of the 
coordinates [ and 7 are 

(3.11) 
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Using these, the zero-velocity condition on the periphery requires that 

dF. 
& = 0 ,  > = 0  w h e n c =  1. 

d5 

An additional condition must be enforced a t  the points on the line between the two 
foci, i.e. Fi = 0 when 6 = m. 

- 
Employing these boundary conditions, the coefficients of q1 are obtained as 

where 
5( 1 - m6) (1 + mlO) - 3( 1 + m6) (1 -mlO) 

" ='lo 3(1-m2)(1+m6)-(l+m2)(1-m6) 

I 7( 1 - m6) (1 +w1I4) - 3( 1 +me) (1 -m14) 

-'14 3(1 -m2)  (1 +d)- (1 +m2)  (1 -m6) ' 

5(1 -m2)  (1 +mlo)- (1 +m2)  (1 -mlO) 
Dl = 'lo 3(1 - m 2 )  (1 +m6)-  (1 +m2)  (1 -m6) 

7( 1 - m 2 )  (1 + m14) - (1 + m2) (1 -m14) 

3(1 -w')  (1 +m6)-  (1 +m2)  (1 -m6) ' - '14 

(3.13) 
7( 1 - mlO) (1 + m14) -5( 1 + mlO) (1 - mI4) 

) 
C, = 36, 

5(1-m6) (1 +m'O)-3(1 +m6) (1 -,lo 

5(1 -m2) (1 + mlO) - (1 + m2) (1 - mlO) 
5( 1 -m6) (1 + mlO) - 3( 1 + m6) (1 - mlO) ' 

3 ( 1 + ~ 6 ) ( 1 - ~ 1 4 ) - 7 ( 1 - ~ 6 ) ( 1 + ~ 1 4 )  
3( 1 + m6) (1 -mlO) -5( 1 -m6) (1 + mlO) 

D, = 36, 

3(1 -m2) (1 + m6) - (1 +m2)  (1 -m6) 
3(1 +me)  (1 -m10)-55(1 -ma)  (1 +ml0)' 

- 5D 

p5 = & n 4 [ c l o ( l - ~ ) - ~ D 3 ( l - ~ ) ~ 2 - C s ( l - ~ ) ~ 4 + D 5 ( l - ~ ) ~ 6 ] ~ ,  J 
(3.14) 

7( 1 - m 2 )  (1 +m14)- (1 +m2) (1 -m14) 

7 ( 1 - ~ m ' 0 ) ( l + ~ ' 4 ) - 5 ( 1  +m10)(1-m14) 
(7, = Cl0 

7(1-m6)(1+m14)-3(1+m6)(l-m14) 
7(1 -mlO) (1 +m14) -5( 1 +m'O) (1 -m14) ' 

- 3D 

5( 1 - m2) (1 +ml') - (1  + m2) (1 -mlO) 
D5 = 'lo 7(1 -mlO) (1 +m14)-5(1 +do) (1 --m14) 

I 5( 1 -m6) (1 + mlO) - 3( 1 + m6) (1 - mlO) 
7( 1 - mlO) (1 + m14) - 5( 1 + mlO) (1 - ml*) ' 

-3D 
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C, = 9b, 
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5(  1 -me) (1 + m14) - 3( 1 + me) (1  -m14) 

7(1 -mlO) ( 1  +m14) - 5(  1 + mlO) (1  - m14) 

7(1-~')(1+~'4)-(1+~')(1-~14) 
-5c14 7( 1 - mlO) (1 + m14) - 5( 1 + mlO) ( 1  - m14) ' 

5(  1 -me) (1 +do) - 3( 1 +me) (1  - mlO) 
7( 1 -mlO) (1 + m14) -5(  1 + mlO) (1  - m14) 

D, = 9bl 

5(  1 -m2) (1  + mlO) - (1 + m2) (1 -mlO) 
-5c14 7( 1 -mlO) (1  + m14) -5(  1 +mlO) ( 1  -m14) * 

I (3.16) 

It may be noted that the constant D,  can be related to the constant D,. However, 
they are listed above separately to maintain the symmetric presentation. 

4. Secondary flow for vertically placed elliptical periphery 

the relation 
For the vertical positioning of the elliptic section i t  is convenient to  define 6, by 

Use of (4.1) and substitution of wo from (2.5) into (3.1) yield 

where 

V4$, = 4 4 1  +m4-z2) [(1-m2+m4) cosy-m2 C O S ~ ~ ] ,  

m2 
a = [+-. 

5 
Using the transformation relation (3.3) and letting 

a, = l+m2,  

the equation of 7, is transformed into a form involving the operator vz as 

where 

and 

~ ' v ' ~ l  = a,  a (u ,  cos 71 + u3 cos 371 + u5 cos 571); 

a, au, = 4[( 1 +m6) e6 - ( 1  + m6) el, c2] t3, 
a, au3 = - 4m2[( 1 + mlO) e2 - ( 1  + m') el, c4] 5, 

a,  au, = 4m4[(1 +m6)  e 2 -  (1  + m 2 )  e6 5'3 5 
rn10 

el0 = I + -  e2 = I + - ,  m2 ee = l+->  me 
g2 lie 5 ' O  . 

(4.3) 

It must be noted that, to maintain uniformity, the same notation (u,, u3, u,) used in 
$3 has been used here. 

By following similar steps as those used in $3, (4.3) accepts a solution of the form 

(4.4) 
- - 
c$, = F, cos 71 + F3 cos 37 + F, cos 571 + F7 cos 771. 
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The coefficients involved in (4.4) are calculated as follows : 

7( 1 +m2) (1 -m14) - (1 -m2) (1 +m14) 

-'14 3(1 +m2) (1 -m6) - (I - m 2 )  (1 +ma) ' 

where 

5(1+~a)(1-~10)-3(1-~a)(1+~10) 
" = 'lo 3(1 +m2) (1 -ma)- (1 - m 2 )  (1 +m6) 

7( 1 + m6) (1 - m14) -3( 1 -ma) (1 +m14) 

-'14 3( 1 + m2) (1 -ma) - (1 - m2) (1 +ma) 

5(1 +m2)  (1 -ml0 )-(1-m"(l+m10) 
D l  = 'lo 3( 1 + m2) (1 -m6)-  (1 -m2)  (1 +ma) 

a, = l+m2, 

7( 1 + mlO) (1 - m14) - 5 (  1 - mlO) (1 + m14) 

5(1+~6)(l-~10)-3(1-~a)(l+~10) 
c, = 3a1 

5(l+m2) (1--lo ) - (1 -m2) (1 +m10) + 5D 
5(1+~6)(1-~10)-3(1-~a)(1+~10)' 

3(1-m6)(1+m14)-7(1+m6)(l-~14 ) D, = 3a1 
3(1-~~~)(1+m'~)-5(1+m~) (1-m") 

3(1 + m 2 )  (1-m6)-(1-m2) (1 +ma) 
- 5D 3(1-~2)(1+m10)-5(1+m6)(1-~10)' 

7(1+ m2) (1 -m14) - (1 -m2)  (1 + m14) 

c5 = 'lo 7( 1 + m10) (1 -,la) - 5( 1 -mlO) (1 + ml") 

(4.7) 

7( 1 + ma) (1 - m14) - 3( 1 -ma) (1 + m14) - SD 
7(1+~10)(1-~'4)-5(1-~10)(1+~14) 

5( 1 + m2) (1 - mlO) - (1 -m2) (1 + mlO) 
D5 = 'lo 7( 1 +do) (1 -m14) - 5( 1 -mlO) (1 + m14) 

5( 1 +w/ ,~ )  (1 -m'O) - 3( 1 -ma) (1 + mlO) 
7(1+m'0)(1-~14)-5(1-~10)(1 +m14) 

- SD 
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7( 1 + m6) (1  -m14) - 3( 1 -m6) (1 + m14) c, = 9a1 
7(1 +m'O) (1  -m14) -5(1 -m") ( 1  +m'*) 

7( 1 +m2)  (1  -m14) - ( 1  -m2) ( 1  +m14) 
-5c14 7( 1 +m'O) ( 1  -m14) -5(1 -mlO) (1  +m14)' 

5 ( 1 + ~ s ) ( l - ~ 1 0 ) - 3 ( 1 - ~ m " )  (l+m'O) 
7( 1 + mlO) ( 1  - m14) -5(1 -mlO) (1  + m14) 

D, = 9al 

5( 1 + m2) (1  - mlO) - ( 1  -m2) ( 1  +m'O) 
7( 1 + mlO) ( 1  - m14) - 5( 1 - mlO) (1  +,la) ' 

- 5% 

1 (4.9) 

Again the same argument as before holds true that the constants D, and D, are 
related to each other. 

5. Secondary-flow streamlines and discussion 
The secondary-flow streamlines are plotted for a particular section with semiaxis 

ratio of 

corresponding to an ellipticity ratio of m = 43. The resulting curves are presented 

in figures 3 and 4. The numerical (negative) values of the stream function & are 
indicated at the eyepoints in each figure. 

It is interesting to  compare the relative position of the eyepoint for circular and 
elliptical cross-sections. For a full circular section the eyepoint is located a t  a point 
on the vertical axis a t  a distance of 0.429 of the radius, measured from the centre 
(cf. Topakoglu 1967). 

For an  elliptical cross-section with an ellipticity ratio as selected above, the 
eyepoint positions measured from the centre of the sections are, for a horizontally 
placed ellipse, 0.422 of the semiminor axis; and, for a vertically placed ellipse, 0.482 
of the semimajor axis. 

It must be noted that, although the streamlines as calculated from the first term 
of the expansion of the secondary flow are symmetrical with respect to the vertical 
axis CX (figure l ) ,  the velocity components from (1.4) are not symmetrical, because 
of the term Y .  

A comparison is made between the results of Thomas & Walters (1965) and the 
present findings. Noting that the comparison must be based on the dimensional 
velocity components, and also noting that the perturbation parameter of Thomas & 
Walters (i.e. the Dean number) when written in the notation used in this paper is 

- 

A 
2 Re2, 

the horizontal velocity components of the present paper and of Thomas & Walters 
(when written in the notation of this paper) are respectively 

2 ( l + m  ) 2. ax 
4 z a X  J v l  1 +m2 V = -- - Re2 

A U  (i+m4)2 
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3 
and major axes = - 

4' 

FIGURE 3. Secondary-flow streamlines for horizontally placed ellipse. 

FIGURE 4. Secondary-flow streamlines for vertically placed ellipse 
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0 
0.03467 2 
0.173361 
0.282475 
0.292787 
0.40 1206 
0.502 746 
0.599700 
0.693443 

0.444324 
0.445037 
0.461 831 
0.489431 
0.492620 
0.531406 
0.575 190 
0.62 2306 
0.671755 

0 
0.000207 
0.000901 
0.001 134 
0.001 137 
0.000983 
0.000597 
0.000 189 
0 

0 
0.000199 
0.000869 
0.001096 
0.001099 
0.000953 
0.000580 
0.000185 
0 

TABLE 1.  Comparison of stream function with that of Thomas & Walters (1965) 

In  Thomas & Walters’ work a left-handed coordinati: system is used. Therefore the 
first V of (5.1) must be compared with the second V of (5.1) after changing its sign. 
I n  addition, since Thomas & Walters’ analysis is based on the simplified continuity 
and simplified NavierStokes equations, their velocity components do not contain 
the term Y as seen in (1.4). Another difference between the two analyses is the use 
of q5, as defined in (1.5), which is not used in Thogas & Walters’ formulation. The 
above considerations require that the function cF1 of the present paper must be 
compared with - 2 ( l + ~ n ~ ) ~ ~ ~  of Thomas & Walters’ result a t  the corresponding 
points of the cross-section. The numerical values of these two quantities calculated 
at  some selected points on the line, 7 = 0 . 6 ~ / 2 ,  for a horizontally placed ellipse with 
an ellipticity ratio m = d#, are shown in table 1 .  

The table shows that there are still differences between the two sets of results. Some 
of these are unavoidable because of long numerical computations. Further analytical 
inspection is impossible because details have not been given for the integration of 
the non-homogeneous biharmonic equation of the secondary-flow stream function 
in Thomas & Walters’ work. 

In  conclusion, i t  must be added that, in addition to  the correct effect of the factor 
Y in (1.4), the availability of expressions in elliptic coordinates will facilitate further 
calculations for higher-order terms of the primary and secondary flows in elliptic 
curved pipes as well as in other problems involving flow in such pipes. 

The results presented in this paper were obtained in the course of research 
sponsored by the National Science Foundation, Washington, D.C., under Grant 
Rll-8305297 to  Southern University and its precursors. 

The authors appreciate the contribution made by Mr Lenhat Le to  the numerical 
computations and the graphical work involved in this paper. 
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